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Abstract--The present work studies the asymptotic structure of the turbulent boundary layer near a 
separation point through the single limit concept of Kaplun. A new scaling procedure is introduced 
resulting in a changeable asymptotic structure which is consistent with the experimental data. The classical 
structure of the velocity and temperature boundary layers is shown to develop into a one-deck structure 
near the separation joint due to the merging of the two principal equations. The Reynolds analogy breaks 
down yielding a different power-law for the temperature profile. New laws of the wall for both the velocity 

and temperature fields are derived. © 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

The description of a turbulent flow near a separation 
point is a very important but difficult problem. Indeed, 
the reduction to zero of the main scaling parameters 
in the asymptotic theory of turbulent boundary layer 
flow completely breaks down the classical two-deck 
structure. As a result, several analyses where alter- 
native characteristic scaling parameters are proposed 
were developed over the last five years. These analyses 
explain how the classical former asymptotic develop- 
ments for zero pressure gradients boundary layers can 
be modified such that a yl/Z-power law replaces the log 
law. Most work,i, however, are restricted to analyses 
of the velocity boundary layer problem only. 

The purpose of this work is to study the asymptotic 
structure of both the velocity and the temperature 
turbulent boundary layers near a separation point. 
Theflows of interest here are those that separate due 
to adverse pressure gradients in or on smoothly vary- 
ing surfaces such as, for example, the flows through a 
diffuser or over a turbine blade. Unfortunately, there 
have been few studies on the heat transfer process of 
separating flows, most of which have dealt with flows 
that separate due to abrupt changes in geometry. The 
experimental data on heat transfer on separating flows 
show a drop on the heat transfer coefficient at sep- 
aration followed by a sharp rise in the reattachment 
zone, and this behaviour must somehow be captured 
by any advanced theory. The implication is that, as 
the separation point is approached, the velocity and 
the temperature fields have different asymptotic struc- 
tures, the Reynolds analogy breaks down and different 
power-law expressions emerge from the near wall 
equations. 

t Author to whom correspondence should be addressed. 

Here, we develop a detailed asymptotic analysis 
near a separation point to determine the local behav- 
iour of the velocity and the temperature profiles, and 
consequently of the skin-friction coefficient and the 
Stanton number. From these results, any Reynolds 
analogy will then be possible to assess. 

For the classical problem of zero-pressure-gradient 
boundary layers, early developments by Yajnik [1], 
Mellor [2] and Bush and Fendell [3] have stated the 
boundary layer to have a two-layered structure con- 
sisting of a viscous wall layer and an outer defect 
region. The two former authors do not use any closure 
hypothesis to represent the turbulent shear stress 
terms, relying on their analyses only on asymptotic 
reasoning. Bush and Fendell, on the other hand, use in 
their developments turbulence models of the mixing- 
length/eddy viscosity type. In all cases, the flow struc- 
ture and solutions are developed in terms of an appro- 
priate small parameter, e = ord(ln R)-l .  Using a com- 
pletely different asymptotic approach, Melnik [4] 
instead has claimed the boundary layer to have a 
three-deck structure. His formulation is based on a 
two-parameter expansion of the boundary layer equa- 
tions, the new additional small parameter resulting 
from the particular turbulence closure model he uses. 
Sychev and Sychev [5] are also positive in saying that, 
even for flow without a pressure gradient, the bound- 
ary layer structure is three-layered. 

In fact, all new discussions that have led to the 
development of three-layered asymptotic models for 
the turbulent boundary layer are motivated by the 
inability of the classical two-deck model to deal with 
large adverse pressure gradients. When a turbulent 
boundary layer is subjected to a large adverse pressure 
gradient, the wake velocity deficit is large and the 
mean momentum equation is non-linear. These fea- 
tures make Millikan's 'matchability' arguments, 
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NOMENCLATURE 

A constant in Stratford's law of the wall 
B constant in the temperature law of the 

wall 
cp specific heat at constant pressure 
cp constant in k-e-model 
C, b,, constants in the velocity law of the wall 
Cf skin friction coefficient 
D formal limit domain 
E denotes partial differential equation 
El, Ez parameter in law of the wall 
F, G generic functions defined in E by a 

system of differential equations 
H enthalpy 
k von Karman's  constant 
K turbulent kinetic energy 
L characteristic length in viscous region 
Pr Prandtl number 
p, P pressure 
q, Q heat flux 
R Reynolds number 
S solutions of E 
St Stanton number 
t, T temperature 
t~ friction temperature 
u, v velocity components 
uT friction velocity 
uR reference velocity 
u ÷ inner wall reference velocity = u/u, 
x, y flow Cartesian coordinates 
y+ inner wall reference scale = yuJv. 

Greek symbols 
ct overlap index defined by equation (17) 
6 gauge function 
A, r/ functions defined in E 
e small parameter 
0 error function defined by equation (15) 
/~ viscosity 
v kinematic viscosity 

space of all positive continuous 
functions on (0, 1] 

p density 
z shear stress. 

Subscripts 
1, 2 order of magnitude 
d singularity point 
i, j summation 
1 local conditions 
p first grid point 
t temperature 
w conditions at wall 
A variable stretched according to A(e) 
q variable stretched according to q(e) 
oo external flow conditions. 

Superscripts 
' turbulent fluctuation 

function transformed according to 
definition 1. 

which result is a log-law and in a two deck structure, 
not valid anymore. Also the friction velocity, u ,  used 
in the classical approaches as a characteristic velocity, 
becomes an inappropriate scaling parameter for 
adverse pressure gradient boundary layers since it 
tends to zero. All these difficulties force into the 
adverse pressure gradient problem a new small par- 
ameter of the order of R-  1/3, which is used to scale a 
power y layer that replaces Millikan's log-layer. This 
layer matches, on passage of the inner and outer limits, 
respectively, to the wall and defect layers. Thus, 
according to this picture, three sets of characteristic 
scales are needed for the asymptotic description of 
adverse pressure gradient turbulent boundary layers 
(see Durbin and Belcher [6]). 

A major difficulty of all previous theories is to estab- 
lish a single scaling procedure which can naturally 
accommodate the far upstream boundary layer struc- 
ture to a two-deck structure, and the far downstream 
structure to a three-deck structure. In other words, the 
theories are not capable of explaining, in asymptotic 
terms, how the logarithmic layer vanishes as sep- 
aration is approached, and how the fl/2-1ayer is 

formed. In fact, some theories (Melnik [4], Mellor [7], 
Gersten [8]) present expressions for the intermediate 
layer that upon appropriate limit passages reduce to 
the log-law upstream and to the t/Z-law downstream. 
These expressions, however, are developed in terms of 
inappropriate scaling parameters or conceptual 
frameworks that cannot explain how the logarithmic 
portion completely vanishes as u, ~ O. 

In the present work a new scaling procedure is pre- 
sented which is not subject to the aforementioned 
prejudices. A scaling parameter is defined through an 
algebraic equation, resulting in a changeable asymp- 
totic structure for the boundary layer, different from 
those of other authors, but consistent with the exper- 
imental data. The flow structure is studied through 
the single limit process concept of Kaplun [9], together 
with his Ansatz about domains of validity. Thus, some 
formal properties of the motion equations, yielded by 
the definition of 'equivalent in the limit' of Kaplun, 
are used to determine the actual validity domains and 
overlap regions. The present work follows the 
approaches of Yajnik and of Mellor, not imposing any 
functional relationship between quantities determined 
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by the Reynolds stress field and by the velocity field. 
These two fields .are related only through some order 
of magnitude hypotheses about the velocity fluc- 
tuations. 

A common fact is that a thermal turbulent bound- 
ary layer far ups~Lream of a separation point also has 
a classical two-layered asymptotic structure, except 
that now the Prandtl number will be a parameter in 
the inner layer scaling. The Reynolds analogy holds 
and a temperature log-law exists. As separation is 
approached, however, we have just seen that the vel- 
ocity boundary layer changes into a new asymptotic 
structure, and th:is somehow must also occur with the 
thermal boundary layer. The disappearance of the 
velocity log-law :region must be reflected on the tem- 
perature field, resulting in the appearance of some 
temperature power-y law. Here we show that, depend- 
ing on the Prandtl number, as the separation is 
approached, the velocity and temperature asymptotic 
structures are different, the Reynolds analogy com- 
pletely breaks down, and a different power-law 
emerges for the temperature profile. By means of an 
appropriate scaling, a new expression is derived for 
the temperature law of the wall which reduces to the 
log-law upstream of the separation and to a power- 
law near the separation point. Extension of this 
expression to the defect layer by specification of a 
wake function will result in a Stanton number equa- 
tion. The equation shows the Stanton number to pass 
through a finite value at the point of zero skin-friction. 

The theory leads to a new expression for the law of 
the wall and to a skin-friction equation that holds up 
to the separation point. The latter equation can be 
constructed by consideration of a general defect law 
for adverse pressure gradient boundary layers. The 
results for the reverse flow region show that log- 
arithmic profiles are also found there. 

All theoretical results are validated with the back- 
ward-facing step flow data of Vogel and Eaton [10] 
and with the divergent channel flow data of Driver 
and Seegrniller [11]. In addition, a numerical 
implementation of the theory is made so as to compare 
the present fonaaulation with more complex and 
expensive approaches. In particular, a comparison is 
made with the RSM formulation of Hwang and Peng 
[12]. The new results presented here include velocity, 
skin-friction and Stanton number profile predictions. 

2. KAPLUN LIMITS 

In this section, a survey of some essential ideas used 
in solving singular perturbation problems is made. 
Some of the concepts to be discussed here are those 
of matching of asymptotic expansions, domain of val- 
idity of such expansions, overlap, formal validity of 
equations and limit processes. 

The purpose of perturbation methods is to try to 
construct approximating solutions by the study of 
simplified equations. For the class of problems termed 
singular perturbation problems, at least two expan- 

sions are needed to construct a solution which is uni- 
formly valid in the whole interval domain. It is thus 
necessary to define the concept of uniform domain of 
validity for such approximations. This can be achieved 
by a direct extension of the concepts of uniform con- 
vergence on an interval and of uniform validity on an 
interval, to the concepts of uniform convergence on a 
function class and of uniform validity on a function 
class. The concepts of domain of validity, of overlap, 
of limit processes and of matching then follow 
immediately. 

Matching is, by its nature, a comparison of two 
approximations in their domain of overlap. On this 
ground, rules and recipes can be devised for matching 
in which the concept of overlap does not appear 
explicitly. The well known technique of interchanging 
limit expansions can be shown to be appropriate for 
certain simpler cases. In simpler cases, even more pre- 
cise rules can be enunciated such as the matching 
principle of Van Dyke [13]. This leads us to the central 
problem in perturbation theory : how can one justify 
a pr ior i  that two approximations have an overlap 
domain? 

Trying to overcome this difficulty, Kaplun [9] 
suggested to consider some formal properties of equa- 
tions, characterizing them through their domains of 
validity. This would be not only more basic for under- 
standing the matching process but also essential in the 
construction of the asymptotic expansions. Since all 
techniques used for matching are based on overlap, it 
is clear that this can only be achieved if two approxi- 
mations have a common validity domain. The formal 
properties of an approximation are defined through a 
study of limits of the original equation. Then, the 
concepts of formal domain, of intermediate equation, 
of principal equation and of formal domain of validity 
can be introduced. The operational details of the 
mathematical procedure are laid by five definitions, 
one Axiom and one Ansatz. These are shown below. 

The formulation to be presented here is only intro- 
ductory to the ample sets of results presented in 
Kaplun [9] and in Lagerstrom and Casten [14]. For 
more details on the technique, the reader is referred 
to these two works. Complementary material is found 
in Meyer [15], in Freund [16] and in Silva Freire and 
Hirata [17]. 

Here we use the topology on the collection of order 
classes as introduced by Meyer [15]. 

Let e be a parameter on (0, 1] and x a variable in 
R n with Euclidean norm Ixl. Let F be a function 
defined for e and on some x-space domain with point- 
wise norm [[FII. Our interest is to study the behaviour 
of F in the limit e ~ 0. In particular, we are interested 
in the cases where singularities arise. For example, 
passage of the limit may result in the loss of the highest 
order derivative term in a differential equation, and 
hence in the impossibility of satisfying all the bound- 
ary conditions. The idea of the Kaplun limit is to 
study the limit as e ~ 0 not for fixed x near a singu- 
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larity point Xd, but for x tending to Xd in a definite 
relationship to e specified by a stretching function q(e). 

Taking Xd = O, we define 

X 
x, = q(e)' G(x,j;e) = F(x;e)  (1) 

with q(e) a function defined in -~ (=  space of all posi- 
tive continuous functions on (0, 1]). 

The Kaplun limit process is then defined as follows. 

Definition 1 (Meyer I15]). If the function 

a(x~ ; + o) = ! ~  a (x .  ; 1;) 

exists uniformly on {x/Ix.I > 0}; then we define 
lim, F(x ; e) = G(x,, + 0). 

If F is a function defined by a system of differential 
equations, then the above definition establishes to 
every order of q a correspondence original equation 

lim, associated equation on the subset of =- for which 
the associated equation exists. The passage of the q- 
limit process is a formal operation which results in a 
set of associated equations referred to by Kaplun [9] 
as the 'splitting' of the original differential equation; 
this operation establishes the basis for the definition 
of formal domain of validity. 

Definition 2. The formal limit domain of an associated 
equation E is the set of orders e such that the q-limit 
process applied to the original equation yields E. 

To evaluate how close two equations are, Kaplun 
needed to advance a measuring procedure. This was 
made through the definition of equivalent in the limit. 

Definition 3. Two equations E~ and E2 are said to be 
equivalent in the limit for a given limit process, lim,, 
and to a given order 6(e), if, 

0 = E l  (X'7 ; I;) - -  E 2 ( x  n ; 8)  --* 0, as e --, 0. 
6(e) 

Definition 4 (of formal domain of validity). The formal 
domain of validity to order 6(e) of an equation E of 
formal limit domain D is the set De = D w D~s, where 
D~s are the formal limit domains of all equations E~ 
such that E and E, are equivalent to Di to order 6(e). 

To relate the formal domain of validity of an equa- 
tion to its actual domain of validity, Kaplun [9] 
advanced two assertions, the Axiom of Existence and 
the Ansatz about domains of validity. These assertions 
are primitive and unverifiable assumptions of per- 
turbation theory. They allow one to use definitions 1- 
4 to find approximate solutions to singular per- 
turbation problems. Because the heuristic nature of 
the Axiom and of the Ansatz, comparison to exper- 
iments will always be important for validation 
purposes. The theory, however, as implemented 
through the above operations, is always very helpful 
in understanding the matching process and in con- 
structing the appropriate asymptotic expansions. 

Axiom (of Existence) (Kaplun 19]). If equations E~ and 

E: are equivalent in the limit to order 6(e) for a certain 
region, then given a solution $1 of El which lies in the 
region of equivalence of E1 and E2, there exists a 
solution $2 of E2 such that as e --, 0, IS 1 --$2[/(~ ~ O, in 
the region of equivalence of E~ and E2. 

To this axiom, there corresponds an Ansatz to 
ensure that there exists a solution S~ of El which lies 
in the region of equivalence of E~ and E2. 

Ansatz (about domains of validity) (Kaplun 19l). An 
equation with a given formal domain of validity D 
has a solution whose actual domain of validity cor- 
responds to D. 

The word 'corresponds to' in the Ansatz was 
assumed by Kaplun to actually mean 'is equal to'. The 
above formulation ceases to be valid when small terms 
have large integrated effects. In the example to be 
studied here, however, the principle is expected to 
work. Switchback terms, which are deduced from 
inspection of formally higher order terms, can always 
be included in the original formulation if we backtrack 
to the lower order terms. Large integrated effects 
occur when singularities occur in the approximating 
functions ; these are not expected to occur here. 

3. THE EQUATIONS OF MOTION 

We consider the problem of an incompressible two- 
dimensional turbulent flow over a smooth surface in 
a prescribed pressure distribution. The time-averaged 
motion equations; i.e., the continuity equation, the 
Navier-Stokes equation and the energy equation, can 
be cast as 

0uj = 0 (2) 
0xj 

Oui ap ~2 ~(u~u~) + 1 02u, 
uj Oxj c?xj R ~?x~ (3) 

cgt u j - - = - - e  2 (u}t')+ 1 t~2l 
c~xj Pr R t3x ] (4) 

where the notation is classical. Thus (xt, x2) = (x,y)  
stand for the coordinates, (Ul, u2) = (u, v) for the vel- 
ocities, p for pressure, t for temperature and R and Pr 
for the Reynolds and the Prandtl numbers, respec- 
tively. The dashes are used to indicate a fluctuating 
quantity. In the fluctuation terms an overbar is used 
to indicate a time-average. 

All mean variables are referred to some charac- 
teristic quantity of the external flow. The velocity 
fluctuations, on the other hand, are referred to a 
characteristic velocity uR, firstly introduced in ref. [1]. 
This characteristic velocity, fundamental for the deter- 
mination of the inner layers solution is known to 
reduce upstream and downstream of a separation 
point, respectively, to u, and to (v(dp/dx)/p) t/3. It must 
then be defined so as to comply with this behaviour. 
In the next section we will show how this can be done. 

The small parameter e is defined as 
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UR 
= - ( 2  (5) 

The temperature fluctuation is considered to be of 
the order of the friction temperature t,, here defined 
as 

q 
t, = . (6) 

#CpUn 

Note that the classical definition of t~ based on the 
friction velocity breaks down near a separation point. 
Now, based on the adverse pressure gradient results 
of Orlando et al  [18], we make 

ord(u~) = ord(t'). (7) 

The above assumptions concerning the relative 
order of magnitude of the various fluctuation terms, 
which are cruci~,l for our future developments, have 
become a well ,established result in the asymptotic 
theories for turbulent boundary layer flow. For  
incompressible tlow, the basic experimental support 
for them stems from the works of the Stanford Heat 
and Mass Transfer Group. The results of Kistler [9] 
and of Kistler and Chen [20] provide experimental 
support for compressible flows. 

4. THE VELOCITY AND THE TEMPERATURE 
BOUNDARY L.AYER ASYMPTOTIC STRUCTURE 

We write the asymptotic expansions for the flow 
parameters as 

u(x,, y)  = ul (X, y) + eu2 (x, y) (8) 

tl 
v (x ,y )  = S [ v l ( x , y ) + e v 2 ( x , y ) ]  (9) 

p(x ,  y) = P l (x) + ep2 (x, y) (10) 

t (x ,y )  = t] (x) +et2(x ,y)  (11) 

U~(x,y) = eU~l(x,y)+e2u~2(x,y). (12) 

To find the asymptotic structure of the boundary 
layer we consider the following stretching trans- 
formation 

X y 
Xa = A(e)'  yq r/(e)' ai(xa,y,) = ui(x,y).  

(13) 

with A(e) and r/(e) defined on E. 
Upon substitution of  equation (13) into equation 

(3.2) and upon passage of the ~/-limit process onto the 
resulting equation we get (Cruz and Silva Freire [21]) : 
x-momentum equation : 

~al ~al ~Pl = 
ord~/= ord 1 : t~l ax~ +t~l ~f~y + O~xa 0 (14a) 

orde2 < o r d r / < o r d l :  a l ~ x a + V l ~ y  + ~ X A = 0  

(14b) 

ord e 2 = ord r/: u l 0x--~ + v] ~ + 0x---~ = - 0y---~ 

(14c) 

ord(1/eR) < ord~/< orde2 : 
oa'l ~; 

- 0 (14d) 
ay. 

ord(1/eR) = ord~/: - cOy--~- + dye- = 0 (14e) 

ord r /<  ord(1/eR) : 

y-momentum equation : 

c32t~2 
- 0 (14f) 

o r d r / =  ord 1 : ~l 0-~x + vl 3y--~ + a-~a = 0 (14g) 

aPl ord r /<  ord 1 : ~y~ = 0. (14h) 

The term at (xA, y,) is missing from equations (14e) 
and (14f) since from the no-slip condition t i l=  0 near 
the wall. 

Equations (14c) and (14e) are distinguished in two 
ways : (i) they are determined by specific choices of r/, 
and (ii) they are 'richer' than the others in the sense 
that, application of the limit process to them yields 
some of the other equations, but neither of them can 
be obtained from passage of the limit process to any of 
the other equations. Thus, in the language of Kaplun, 
these equations are called principal equations. Prin- 
cipal equations are important since they are expected 
to be satisfied by the corresponding limits of the exact 
solution. We then make the following definition. 

Definition 5 (of p r i n c i p a l  e q u a t i o n ) .  An equation E of 
formal limit domain D, is said to be principal to order 
6 if: 

(i) one can find another equation E', of formal limit 
domain D', such that E and E' are equivalent in 
D' to order 6 ; 

(ii) E is not equivalent to order 6 to any other equa- 
tion in D. 

A complete solution to the problem should then 
according to the Axiom of Existence and Kaplun's 
Ansatz, be obtained from the principal x-momentum 
and y-momentum equations located at points 
o r d r / =  1, o r d r / =  orde 2 and ord~/= ord (1/eR). The 
formal domains of validity of these equations cover 
the entire domain and overlap in a region determined 
according to definition 4. 

To find the overlap region of equations (4.7c) and 
(4.7e), we must show these equations to have a com- 
mon domain where they were equivalent; thus, we 
must use Kaplun's concept of equivalent in the limit, 
definition 4. A direct application of the definition to 
equations (4.7c) and (4.7e) yields 
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/A1 0Ul ~1 Off1 1 d/~l 1 02/~1 

A Ox~ + f f  ~y~ + A dxa Rq 2 ay~ 
0 = (15) 8a 

Noting that the leading order term in region 
ord(I/eR) < ordq < orde 2 is the turbulent term, of 
ord(e2/q), we normalize the above equation to order 
unity to find 

O=Lo 
,~2 " 

The overlap domain is the set of orders such that 
the q-limit process applied to 0 tends to zero for a 
given e. Then since ord(0/Oy) = e and ord(O/Ox) = 1, 
the formal overlap domain is given by 

D = {q/ord(el+=R) -x < ordq < ord(e2+'A)}. (16) 

According to Kaplun's Ansatz about domains of 
validity, the approximate equations, equations (13c) 
and (13e), only overlap if set (16) is a non-empty set, 
that is, if 

1 / ' I n  R A  \ 
0~<c¢~<- -2~ l - i~e  +3 ) .  (17) 

The implication is that the two-deck turbulent 
boundary layer structure given by the two principal 
equations, equations (13c) and (13e), provides 
approximate solutions which are accurate to the order 
of e "~,~, where em,x is the least upper bound of the 
interval (4.10). This fundamental result can only be 
reached through the application of Kaplun's concepts 
and ideas to the problem. 

We conclude that the turbulent boundary layer has 
a two-deck structure very much like the one derived 
by Sychev and Sychev. This structure, however, must 
change as a separation point is approached. We shall 
see this next. 

Equation (14f) together with the boundary con- 
dition 

Ou2 
~-~-y = ~w (18) 

shows that far away from the separation point u~ = u,. 
Close to the separation point in the limit A ~ 0, 
however, u~ --* 0, so that an alternative value must be 
sought for UR. The characteristic velocity us will be 
determined here through some order of magnitude 
considerations. 

At the bottom of the overlap region, a balance 
between the turbulent and viscous stresses occurs so 
that we may write 

0 . . . .  (~2U2 Op~ (19) 
~yt  --  PU 1 ~ ' ") "{-/'~ ~ y  2 10X" 

In this region, the characteristic length is given by 
V/UR. Then, considering that the turbulent fluctuations 
are of the order of the reference velocity, u~, and that 
the viscous term can be approximated by 

( Ou2"~ 
ord t~t-0-~-y ) = ord(zO 

it results from simple order of magnitude arguments 
that the characteristic velocity can be estimated from 
the algebraic equation 

"C w F ~p 
u 3 - --p u~ - P ~xx = O. (20) 

In the limit A ~ 0, 

( V 0p~I/3 (21) 

recovering the characteristic velocity for the near sep- 
aration point region proposed by Stratford [22] and 
by Townsend [23]. 

The characteristic velocity uR is determined by the 
highest real root of (20). 

The implication is that, close to the separation 
point, ord(e 2) = ord(1/eR), and the two 'rich' equa- 
tions merge giving origin to a new structure. This 
merging provokes the disappearance of  the log-region, 
reducing the flow structure to a wake region and a 
viscous region. 

The flow structure then becomes" 

x-momentum equation • 

0/~2 . 0/~2 Op2 
o r d A = o r d l :  f i 2 ~ + v 2 ~ + ~ = 0  

orde 2 < o r d A < o r d l :  

(22a) 

Oa2 ~ 0~2 Op2 

ord e 2 = ord A :  x--5 + e2 + 0x-5 

(22b) 

ord A < ord e 2 : 
02/~2 02/,12 
t3x2 + Oy---~-= 0 (22d) 

y-momentum equation : 

0~2 0~2 a/~2 
o r d A = o r d l :  ~ 2 7 + v 2 7 +  = 0  (22e) 

dxa ~y~ ~y~ 

. 0~2 A 0~2 OP2 
orde 2 < o r d l  < o r d A :  U2Ox--~ + v 2 ~ + ~ = O  

0~2 0~2 OP2 
orde 2 = o r d A :  U20x -+~2---+----_ Oy~ Ox, 

a n  0~'1~ 02~2  02e2 
Ox~ Oy. F Ox-~5~ ~ + Oy-~. (22g) 

02~2 02Tj2 
o r d A < o r d e  2: 0x~ + ~ = 0 "  (22h) 

(22f) 

au'-~-rl 3~'1YJ 02z~2 ~2z~2 (22c) 
+ O + O 
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At this point it is of interest to note that in the 
region (A, t/) = 07, e 2) the full Navier-Stokes averaged 
equation is recovered. The leading order equations for 
til together with the no-slip condition at the wall gives 
Ul = 0. 

According to the above results, a global solution for 
the problem can only be obtained through equations 
(22c) and (22e). Unfortunately, these non-linear equa- 
tions are of difficult solution, having the turbulent 
term yet to be defined. 

To study the temperature boundary layer asymp- 
totic structure we will use the same procedure as 
before. Application of the stretching transformation 
defined by equations (13) to the energy equation fol- 
lowed by passage of the t/-limit process, yields : 

Oil Oil 
ord t /=  ord 1 : Ul ~X~ -~-Vl ~y~ = 0 (23a) 

ord e 2 < ord t /<  ord 1 : 
Ot I Oi l 

dF~ l ~ = 0 1 ~X~ oy .  

(23b) 

Oi, Oi, O ~  
ordt/ = orde 2: =--- + fl 7--- = (23c) 

al Ox~ oy~ dy~ 

ord(1/eRPr) < o rd t /<  orde2 : 
oei i', 

= 0 (23d) Oy. 

ord t /=  ord(l/eRPr) : - -  = 0 (23e) 0y. Oy~ 

02 t2 
ord t /<  ord(l/eR Pr) : - 0. (23f) ~y~ 

The above equations imply that the temperature 
turbulent boundary layer has a two-layered structure, 
the two 'rich' equations being located at points 
o r d t / = o r d e  2 and ordq=ord(1/eRPr) of the -= 
space. The consequence is that the outer 'rich' equa- 
tions for both the velocity and the temperature boun- 
dary layers are always located at the same point of-~. 
The location of the inner 'rich' equations, however, 
differs by a scale factor, the Prandtl number. Thus, if 
Pr = 1, the asymptotic structures of both the velocity 
and the temperature boundary layers will be identical, 
and logarithmic solutions will arise. 

The overlap domain of equations (23c) and (23e) 
can be calculated just in the same way as the velocity 
field overlap domain was calculated (set 16). For this 
reason, the procedure will not be repeated here. We 
just point out to the reader that for the temperature 
case the overlap domain will depend on the Prandtl 
number. 

Near to a separation point, however, the tem- 
perature boundary layer structure must change, much 
in the same way as the velocity boundary layer struc- 

ture changes. To study this change was pass the A- 
limit process onto equations (23a)-(23f) to obtain : 

Oi2 Oi2 
ordA = ord 1 : u2 Ox--~a +rE ~ = 0 (24a) 

orde 2 < o r d A < o r d l :  
0i2 Oi2 

a~ax-2 +e~N= o 

(24b) 

orde 2 < o r d A < o r d l :  

Oi2 8i2 
- -  +132-;--- = u: Oxa cy, 

ord(1/eRPr) < ordA < orde 2 : 

ord(1/eR Pr) = ord A : 

oe;iq o ~  (24c) 
Oy, Oxa 

a n  aa;i~ 
ay. ~ TZ-x~ =°  

(24d) 

a2~2 a2i2 a n  a ~  
Oy~ + axe ay, axa 0 (24e) 

ordA < ord(l/eRPr): t32i2 02t2 
Oy---f + ~x~ = 0. (24f) 

The temperature leading order equation together 
with the boundary condition gives the solution 
tl = Tw, where Tw stands for wall temperature. 
According to the above equations, the temperature 
boundary layer will have three different asymptotic 
structures depending on the order of magnitude of the 
Prandtl number. If the Prandtl number is order unity, 
ord(e 2) = ord(1/eRPr) near a separation point and 
the two 'rich' equations (5.2c) and (5.2e) merge yield- 
ing a structure identical to the velocity boundary layer 
structure. If ord(Pr) > ord(1), the two 'rich' equa- 
tions will remain defined in different points of the 
space and the temperature two-layered structure will 
be preserved. In the third possibility, ord(Pr) < ord(l), 
the merging of the two temperature 'rich' equations 
will occur prior to the merging of the velocity 'rich' 
equations. This 'premature' merging occurs at point 
(t/A) = ((R Pr)-2/3, (R Pr)-2/3). The flow structure for 
both cases Pr < 1 and Pr > 1 are shown in Fig. 1. 

These figures confirm all results that were expected 
to occur beforehand. For Pr < 1, the disappearance 
of the temperature log-region takes place before the 
disappearance of the velocity log-region. The converse 
is true for Pr > 1. The case Pr < 1 should then be 
more amenable to analytical treatment. 

5. LAW OF THE WALL FORMULATION 

Consider the normal velocity gradient in the fully 
turbulent region, or, alternatively, in a region just 
outside the viscous layer. According to the preceding 
section, the functional dependence of au/ay on the 
flow parameters must be of the form 
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I~_W_ .... ~ ~S° 

/ 

a) e> 

-~t/a 

R 

/ 

b )  P ,< I  
F i g .  1. A s y m p t o t i c  s t r u c t u r e  o f  t h e  f low.  - - -, v e l o c i t y  s t r u c -  

t u r e  ; - - ,  t e m p e r a t u r e  s t r u c t u r e .  

OU 
Oy = f(Y' P' Q 

where all symbols have their classical meaning. The 
above equation is not new, having been arrived at by 
simple dimensional considerations. (See, for example, 
Gersten [8], Landau and Lifshitz [24] and Kader and 
Yaglom [25].) The only combination of parameters y, 
p, z which yields the dimension of Ou/~y is 

O u  + 1  ]z~p]  
y 

where k is a constant (the Von Karman constant), 
and the sign + or - must agree with the direction of 
z. To solve this equation some consideration will have 
to be made about the behaviour of z. A Taylor series 
expansion around y = 0, gives 

dPw z = z~+ ~ y + O ( y  2) 
( I X -  

where Zw and dPw/dx are, respectively, the shear 
stresses and the pressure at the wall. Substitution of 
the above equation into the previous one will give 
three different integration functions depending on the 
relative values of zw and of (dPw/dx). 

Case 1 : (Zw/p) >/0 

2 / zw /p+ldPw V / ~  
u= p---d~-x y + 

1 dPw 
*w/p + 

x In +C~(x). (25) 

Zw/p+ 1 dPw Wy+,/ wlp 
Case 2: (rw/p) ~< 0 and I(1/p)(dPw/dx)yl ~ IXw/pl --) 

1 dPw Zw/p 2 u = 2  

--~x y.-I- - -  _ 

/ 1 dPw 
ffw/P+p dx-x Y 

× arctan ~ S-~/p- + Cz (x). (26) 

Case 3: (Zw/p) ~< 0 and I(1/p)(dPw/dx)yl <~ Izw/pl 

2 ;  ldPw 
- k  - - z w / P - - p ~ - x Y -  k R =  

-  w/p - p y -  # -  w/p 

× In + C3 (x). 
; - - z~ /p  1 dPw 

p -~x-x Y + x/ - zw I P 
(27) 

Equations (25)-(27) are a generalization of the 
classical law of the wall for separating flows. Far  
upstream from the separation point, zwlp >> 
(dPw/dx)(y/p) and equation (25) reduces to 

1 + 
u ÷ = fclny +b,,  

the classical log-law. 
Near to a separation point, equation (25) tends to 

2 + l/z 
u + = ~ ( y  ) --A 

the Stratford's law of the wall. 
Downstream of the separation point, in the region 

of reverse flow, equation (27) holds. Equally to equa- 
tion (25), this equation has a logarithmic behaviour. 
The reverse flow direction, however, is immediately 
implied by the minus sign. Several experimental works 
have observed a logarithmic law in the reverse flow 
region (Simpson et al. [26], Thompson and Whitelaw 
[27], Dengel and Fernholtz [28]). We now turn to 
another very important point of our problem: the 
characteristic length scales of flow. 

To find the viscous layer characteristic length, we 
again resort to the results of  the previous section of 
the paper to write 

O2u 1 dPw 
v - - = 0  Oy 2 p dx 
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the approximate near wall flow motion equation. Suc- 
cessive integration of  the above equation together with 
the boundary cortditions at the wall yields 

% L 1 dPw L 2 
u*u" = 7 ? Y* ~ p dx ~ y,2 

where u * =  u/u. y * =  y/L and L is a length scale 
still to be determined. Considering that in the viscous 
region ord(u*) = ord(y*) = ord(1), and passing the 
limit as uT ~ O, we obtain 

2 ~ ( ~dewu~  

L =  
1 dPw 
p dx 

From the above equation, it results that 

21u~1 
L -  

1 dPw' 
p dx 

As can be seen, the behaviour of L downstream of 
the separation point is completely different from its 
upstream behaviour where L = v/u~. 

Similarly to the velocity field analysis, we start our 
investigation by looking at the near wall conduction 
region. Then, just outside of it, in the fully turbulent 
region, the flux of heat must have a functional depen- 
dence of the form 

OT 
~y = 9(Y, P, Cp, qw, Ou/Oy) 

where T = T~- T,~ and Tl and Tw are, respectively, the 
local fluid temperature and the wall temperature. 

Cp and qw stand for the specific heat at a constant 
pressure and for the local flux of heat at the wall. 

After dimensional considerations, we write 

~_T= Bqw 1 
t~y pcp (y2 Ou/t~y) 

with B a constant still to be determined. These equa- 
tions will lead, again, to three different integration 
functions depending on the relative values of Zw and 
of (dPw/dx) 

Case 1 : (%/p)/> 0 -~ 

1 qw 1 
T 

k, pCp ~/~  

~ /  1 dPw 
p + y -  47££ 

x In + Ctl (x, Pr). 
, X / ~ p +  1 dPw , - - - -  

(28) 

Case 2: (Zw/p) ~ 0 and I(1/p)(dPw/dx)yl >1 I*w/pl 

tZw/p+ 1 dPw 
1 qw ; a r c t a n ~  = P--dx-xY+c,z(x, Pr ) 

T -  k, pCp - -  Zw/p 

(29) 

Case 3 : (Zw/p) <. 0 and [(1/p)(dPw/dx)yl ~ Zw/p[ 

1 qw 1 
T -  

k, pCp / __ ,w 

4 P 

[ 1 dew 

×ln x/-'w/P- 
X/ 1 dP,,, 

--Zw/P--p-~xx Y+ x/--%/P 

+ C,3 (x, Pr). (30) 

These equations are the law of the wall for the 
temperature boundary layer in separating flows. Like- 
wise the velocity expressions, these equations have 
the expected behaviour near and far away from the 
separation point. In fact, for the limit case, 
IZw/Pl >> I(dpw/dx)(y/p)l, equation (28) reduces to the 
classical law of the wall logarithmic profile given by 

t-twt~ ~ lny+ +C'(Pr)" 

In the limit case zw --* O, however, equations (28)- 
(30) reduce to expressions with the form 

t-tw 1 qw - 2  
- -  +C.(x ,  er). (31) 

t~ kt pcp / l d P w  

This equation has a functional form different from 
Stratford's law of the wall, and this clearly charac- 
terizes the break down of the Reynolds analogy near 
a separation point. This fact has been experimentally 
observed by, for example, Vogel and Eaton [10]. The 
region of validity of equations (25)-(30) is illustrated 
in Fig. 2. 

Validity Region for 
the Laws of the Wall 

1 

///////////////////////////2 ~//////////////////////A 
Fig. 2. Validity domain of laws of the wall. The separation 

point is located at the foot of region 2. 



2106 D.O.A. CRUZ and A. P. SILVA FREIRE 

In what follows, we will give experimental evidence 
of the above formulation. This will be made in two 
ways : (1) by a direct analysis of the experimental data 
and the realization that the temperature profile has a 
minus-half-power behaviour, and (2) by a numerical 
implementation of expressions (25)-(30) in a finite 
volume method computer code. The predicted skin- 
friction, Stanton number and velocity profiles will 
then be compared with the experimental data. 

6. EXPERIMENTAL AND NUMERICAL 
VALIDATION 

The theoretical results will be validated with the 
backward-facing step flow data of Vogel and Eaton 
[10] and with the divergent channel flow data of Driver 
and Seegmiller [11]. The experimental flow conditions 
for both experiments are shown in Table 1. 

The temperature profiles in the reverse flow regions 
are shown in Fig. 3. The occurrence of a logarithmic 
solution is evident as predicted by solution (30). In 
Fig. 4, the temperature profile at the separation point 
is shown. The existence of a flow region where 
T ~  - T ~ y-<i~2) is apparent. The existence of an adjac- 
ent to the wall viscous sub-layer and of a defect layer 

can also be seen in this figure. The half-power law for 
the velocity profile is shown in Fig. 5. According with 
the theoretical results, this figure shows that the half- 
power law holds not only at the separation point but 
also for the reverse flow region as predicted by equa- 
tion (27). 

A numerical implementation of the present theory 
was made with the help of the computer code CAST 
(Computer Aided Simulation of Turbulence, Peric 
and Scheuerer [29]). This program is similar in struc- 
ture to other existing fluid flow prediction schemes 
such as TEAM and TEACH. It is thus a conservative 
finite-volume method in primitive variables. Differ- 
ences from those codes arise in the co-located variable 
arrangement, the discretization scheme, the solution 
agorithms for the linear equation systems resulting 
form the discretization and in the pressure coupling 
which is adopted to the co-located variable storage. 

For turbulent flow, the code solves the Reynolds 
averaged Navier-Stokes equations in connection with 
the K - e  differential turbulence model of Launder and 
Spalding [30]. The five empirical constants appearing 
in the code take on the standard values. Since CAST 
uses the wall function method, updating the program 

. / 

was a relatwely straightforward affair. To evaluate the 
momentum balance at the adjacent to the wall volume 
control, we made 

Table 1. Experiental flow conditions to zw/> 0 : 

Author U [m s-l] R Qw [Wm -2] 
Zw = rcc 1/4 P x / ~ p  u (32) 

VogelandEaton 11.3 28000 270 ~' l n E l y l  P 
Driver and Seegrniller 44.3 37 000 0.0 

t o  xw < 0 : 

0.5 

i 
0.0 

-0.5 -- 

I 

-I.0 

0 

• + 

~ ZX 

0 
0 

0 

+ 
h 

ZX 

O 0  
o s 9  

+ 

4~ 

o o ~  

- 1 . 5  i I ' I i I J 

-6.0 -4.0 -2.0 0.0 2.0 
LN(YIH) 

Fig. 3. Temperature profiles in reverse flow region according to Vogel and Eaton [10]. y is referred to the 
step height, H (= 3.79 cm). The points were taken at stations x* = -0.35 (©), -0.55 (A) and -0.75 

(+), where x* = (x-x,~)/x,~, xR = 6.6643 H. 
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Fig. 4. Temperature profile at separation according to Vogel and Eaton [10]. x* = 0.05. 
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Fig. 5. Ve:tocity profile at separation according to Dengel and Fernholtz [27]. Cf = 0.0, 6 = 71.87 mm, 
U~ = 9.211 m s  -1.  

~, = KC~/4 PX/~p 
In E2Y2 up. (33) 

In the above equation, Up denotes the flow velocity 
at the first grid point, 

Yl = ypcl/4 Px/-~p/V (34) 

Y2 = yp/L (35) and E~ 

L -  
p \ ~ . )  p dx  

and Ez 

1 dP.  (36) 

p dx 

U, c = c l / 4 p ~ p  (37) 

are model constants given by 
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20 I 
1.0  ' 

! ~ t 

i t t 

0.0 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 

Fig. 6. Flow streamlines for the Vogel and Eaton [10] geometry. The step height is 0.379 dm. 

(In EO/k = 5 and (ln E:)/k = 10.8. For the evaluation 
of the temperature profile, the boundary condition at 
the wall was taken as 

1/4 I/2 (Hp--Hw)pC. Kp 
Qw 

dPw 
= Pr ' ln  Z w / P q - d - x x Y 2 - - ~  q-C,+fq 

x ~/ dPw 
"Cw / p -}- ~ x  Y 2 "+" ~ 

(38) 

where Hp and K o stand for the enthalpy and the tur- 
bulent kinetic energy at the first grid point. Qw is the 
heat flux at the wall and Cq is given by 

Cq = 12.5Pr 2/3 +2.121nPr-5 .3 ,  ifPr > 0.5 

Cq = 12.5Pr 2/3 + 2 . 1 2 1 n P r -  1.5, ifPr <<, 0.5. 

The concept of a turbulent Prandtl number was 
used here. The calculated streamlines are shown in 
Fig. 6. The calculated reattachment point is located 
at 5-7/10 step heights downstream of separation as 
opposed to the 6-2/3 step heights from the exper- 
iments. Figure 7 shows the calculated velocity profiles 

2 . 0 0  - -  

( ~  E x p .  Data 

- -  N u m .  Results 

E x p .  Data 

- - - N u m .  Results 

0.00  ] 

-0 .50  0.00 0 .50  1.00 
U/Ur~ 

Fig. 7. Calculated velocity profiles for stations x* = -0.32 
(A, U~ = 10.33 m s -I) and x* = -0.44 (O, U~ = 10.46 m 

s-~). Data of Vogel and Eaton [10]. 

for several stations upstream of the separation. As can 
be seen, the theoretical predictions are very good. 

The calculated values of the skin-friction for the 
backward-facing step flow geometry of Vogel and 
Eaton [10] are shown in Fig. 8. The improvement in 
the predictions with the introduction of the new law 
of the wall formulation is remarkable. The assessment 
of the point of minimum Cr value is, in particular, 
very good. The next figure, Fig. 9, shows the skin- 
friction predictions for the divergent channel flow 
geometry of Driver and Seegmiller [11]. In this figure 
a comparison is also made with a RSM simulation of 
the flow by Hwang and Peng [12]. The results obtained 
with the present formulation are clearly comparable 
with the more sophisticated RSM formulation. The 
Stanton number predictions are shown in Fig. 10 for 
the backward-facing step flow geometry. The results 
are reasonable. Possibly, the lack of a better agree- 
ment is the result of the turbulent Prandtl number 
formulation. 

7. FINAL REMARKS 

The present analysis has shown through the concept 
of q-limit of Kaplun how the two-deck turbulent 
boundary layer structure develops into a one-deck 
structure near a separation point. This result seems, 
at first, contradictory to the three-layer structure 
found by other authors (Melnik [4], Durbin and 
Belcher [6]). However, we point out that all local 
equations derived by these authors are intermediate 
equations, in the sense of Kaplun, being therefore, 
contained in the domain of validity of the principal 
equations here derived. In other words we may say 
that those theories are 'contained' in the present 
theory. Of course, the principal equations are of 
difficult solution, do not provide closed analytical 
solutions; however, only these equations give fun- 
damental insight to understand how the viscous and 
defect layers merge as a separation point is 
approached. 

For the temperature boundary layer, the three limit 
cases o rd(Pr )<  ord(1), o rd(Pr )=  ord(1) and ord- 
(Pr) > ord(1) were studied and law of the wall 
expressions were derived. 
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Fig. 10. Stanton number predictions for the backward-facing flow geometry of Vogel and Eaton [10]. 

A n  impor t an t  assumpt ion  of  this work is tha t  the 
reference velocity can be defined th rough  an  algebraic 
equat ion.  The resulting behav iour  of  uR accom- 
modates  the bounda ry  layer structure,  and  gives 
values of  u,, which are very much  in accordance with 
the data  in literature. 

Finally,  a compar i son  of  the present  theory with 
the data  of  Vogel and  Ea ton  [10], and  of  Driver  and  
Seegmiller [11] shows tha t  the present  hypotheses  are 
plausible, leading to consis tent  results. The new con-  
cepts here derived should therefore instigate new 
thoughts  on  separat ing tu rbulen t  bounda ry  layers, in 
part icular ,  on  the na ture  of  its asymptot ic  structure.  
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